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ADDENDUM

Phase-induced atomic permutations in icosahedral
quasicrystals are related to stellated polyhedra

Andreas R̈udinger and Hans-Rainer Trebin
Institut für Theoretische und Angewandte Physik der Universität Stuttgart, Pfaffenwaldring 57,
D-70550 Stuttgart, Germany

Received 25 March 1996

Abstract. By certain variations of the phase of quasiperiodic tilings, vertices can be permuted
and even transported to infinity in a diffusive way. In a preceding article, we have studied such a
motion for the icosahedral Ammann–Kramer–Penrose tiling. The ‘quantum of diffusion’ occurs
in a triacontahedral cage, where atoms in sets of three and seven can be interchanged arbitrarily.
Here we show that these kinetic processes can be represented by the ‘stellated polyhedra’{5, 5

2}
and{3, 5

2}, respectively.

When the phase of a quasiperiodic tiling is changed, vertices are flipping and cause a
rearrangement of the tiles. For the octagonal Ammann–Beenker tiling [1] Frenkelet al [2]
have demonstrated that the vertices (‘atoms’) do not only move back and forth. Instead,
there are octagonal cages, containing a small octagon with three of its vertices occupied by
atoms (figure 1(a)). In a succession of eight flips these atoms jump from vertex to vertex
of this octagon, until they are permuted cyclically. It has been shown that by a sequence of
permutations in adjacent cages atoms can be transported along larger and larger rings and
even to infinity [3, 4].

Figure 1. (a) An octagonal cage with eight optional vertex positions, three of which are
occupied. (b) Eight atomic surfaces corresponding to the eight vertex positions. (c) Each
atomic surface is represented as a straight line; the eight lines form a stellated octagon{ 8

3}.
Every ray intersects the polygon in three points, which are permuted when the ray rotates once
around the central point.

Recently, we have investigated the elementary permutation process in the three-
dimensional icosahedral Ammann–Kramer–Beenker tiling [5]. There, the role of the
octagonal cage is played by a rhombic triacontahedron. Instead of the inner octagon, there
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are two intertwined polyhedra, an icosahedron of twelve vertices, occupied by three atoms,
and a dodecahedron of 20 vertices, occupied by seven atoms. Through successive flips,
corresponding to well defined changes of the phase, the three atoms can be transported
on the icosahedron and permuted, and the same can happen with the seven atoms on the
dodecahedron.

In this addendum, we are going to prove that the kinetic properties of the phason induced
diffusion can be represented in an appealing geometric representation by ‘stellated’ polygons
and polyhedra.

We first describe the picture for the octagonal case. The eight optional vertex positions
in the interior of the octagonal cage correspond to eight octagonal atomic surfaces, whose
projections into perpendicular spaceE′ form eight octagons sharing one vertex (figure 1(b)).
On a circle about thiscentral vertex each octagon takes a sector of 135◦. As long as the
phase is contained in this sector, the corresponding vertex in physical spaceE is occupied
by an atom. Three octagons overlap in a sector of 45◦, hence each such sector describes a
configuration of the three atoms inside the cage. We now represent each octagonal surface
in E′ by a straight line, connecting the outmost vertices of the octagonal atomic surface in
the 135◦ sector and perpendicular to the line between central vertex and midpoint of the
octagon.

The eight lines intersect and form a stellated regular octagon (figure 1(c)). It is denoted
{ 8

3}, as each of its edges covers an angle of2π
8/3. It has the ‘density’ three, because a ray

emanating from the central vertex intersects three of its edges, and it depicts a three-sheeted
covering of the circle with the central vertex as branch point. If the ray sweeps over one
of the vertices of the stellated octagon, the intersection point leaves one edge and enters
another one, which corresponds to a flip inside the octagonal cage. If one follows the
intersection point, then after a full turn one arrives at another edge corresponding to the
permuted atom. Thus the ‘quantum of diffusion’ of the Ammann–Beenker tiling is well
described by the stellated octagon.

The picture is easily transferred to the icosahedral case. The 32 optional vertex positions
inside the triacontahedral cage correspond to 32 triacontahedral atomic surfaces, whose
projections into the three-dimensional perpendicular space also form 32 triacontahedra
sharing a central vertex. For twelve of them, the central vertex is a five-fold one, for
20 a three-fold one. Now we take the twelve triacontahedra and represent each by a
pentagon, perpendicular to the line connecting its midpoint with the central vertex. The
resulting polyhedron consists of 12 interwoven pentagons (figure 2(a)). They intersect
near each vertex in the same manner as the edges of a stellated pentagon{ 5

2}, known as
‘pentagram’ [6]. Hence the polyhedron is denoted with the Schläfli symbol {5, 5

2} [7]. It
has a density of three. Thus a ray emanating from the central vertex intersects three of the
faces. These correspond to the occupied vertices inside the triacontahedral cage and on the
small icosahedron. In total the polyhedron is a stellated dodecahedron of Euler characteristic
minus six and with 12 prongs. The tips of the 12 prongs are branching points, i.e. if they
are encircled by the ray, two of the three occupied positions are exchanged. By encircling
several prongs one can obtain any permutation of the three atoms.

The 20 remaining triacontahedra are analogously represented by large triangles, which
intersect each other forming the stellated icosahedron{3, 5

2} (figure 2(b)). It has density
seven and also 12 branch points, but Euler characteristic two, and it represents the kinetic
situation of the remaining seven atoms in the triacontahedral cage.

If intersections of faces are permitted, the stellated dodecahedron and icosahedron
together with their dual polyhedra{ 5

2, 5} and { 5
2, 3} form the only regular polyhedra in

three dimensions, apart from the five Euclidean ones.
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Figure 2. (a) The polyhedra{5, 5
2} formed by 12 intersecting pentagons. (b) The polyhedra

{3, 5
2} formed by 20 intersecting triangles. From [7].

Thus, by a dimensional reduction of the atomic surfaces we have arrived at a
visualization of the coverings representing the elementary diffusion process of quasiperiodic
tilings. The permutations of vertices within a triacontahedral cage in the Ammann–
Kramer–Penrose tiling are fully determined by the topological structure of these generalized
polyhedra. The dimensional reduction is also possible for many other tilings fulfilling the
closeness condition [8], which means that an extended quasiperiodic atomic hyperplane can
be constructed. The method could, for example, be applied to determine the phase-induced
permutations in the four-dimensional quasicrystal derived from theE8 lattice [9].

We thank Professors Slodowy and Van Straten for valuable discussions.

References
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